Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20

Quadratic Residues and Non-Residues

Selected Topics

Specificaties
Paperback, blz. | Engels
Springer International Publishing | 2016
ISBN13: 9783319459547
Rubricering
Springer International Publishing e druk, 2016 9783319459547
Onderdeel van serie Lecture Notes in Mathematics
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book offers an account of the classical theory of quadratic residues and non-residues with the goal of using that theory as a lens through which to view the development of some of the fundamental methods employed in modern elementary, algebraic, and analytic number theory.

The first three chapters present some basic facts and the history of quadratic residues and non-residues and discuss various proofs of the Law of Quadratic Reciprosity in depth, with an emphasis on the six proofs that Gauss published. The remaining seven chapters explore some interesting applications of the Law of Quadratic Reciprocity, prove some results concerning the distribution and arithmetic structure of quadratic residues and non-residues, provide a detailed proof of Dirichlet’s Class-Number Formula, and discuss the question of whether quadratic residues are randomly distributed. The text is a valuable resource for graduate and advanced undergraduate students as well as for mathematicians interested in number theory.

Specificaties

ISBN13:9783319459547
Taal:Engels
Bindwijze:paperback
Uitgever:Springer International Publishing

Inhoudsopgave

Chapter 1. Introduction: Solving the General Quadratic Congruence Modulo a Prime.- Chapter 2. Basic Facts.- Chapter 3. Gauss' Theorema Aureum: the Law of Quadratic Reciprocity.- Chapter 4. Four Interesting Applications of Quadratic Reciprocity.- Chapter 5. The Zeta Function of an Algebraic Number Field and Some Applications.- Chapter 6. Elementary Proofs.- Chapter 7. Dirichlet L-functions and the Distribution of Quadratic Residues.- Chapter 8. Dirichlet's Class-Number Formula.- Chapter 9. Quadratic Residues and Non-residues in Arithmetic Progression.- Chapter 10. Are quadratic residues randomly distributed?.- Bibliography.

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Quadratic Residues and Non-Residues