Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20

Uniqueness of the Injective III1 Factor

Specificaties
Paperback, 114 blz. | Engels
Springer Berlin Heidelberg | 1989e druk, 1989
ISBN13: 9783540521303
Rubricering
Springer Berlin Heidelberg 1989e druk, 1989 9783540521303
Onderdeel van serie Lecture Notes in Mathematics
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Based on lectures delivered to the Seminar on Operator Algebras at Oakland University during the Winter semesters of 1985 and 1986, these notes are a detailed exposition of recent work of A. Connes and U. Haagerup which together constitute a proof that all injective factors of type III1 which act on a separable Hilbert space are isomorphic. This result disposes of the final open case in the classification of the separably acting injective factors, and is one of the outstanding recent achievements in the theory of operator algebras. The notes will be of considerable interest to specialists in operator algebras, operator theory and workers in allied areas such as quantum statistical mechanics and the theory of group representations.

Specificaties

ISBN13:9783540521303
Taal:Engels
Bindwijze:paperback
Aantal pagina's:114
Uitgever:Springer Berlin Heidelberg
Druk:1989

Inhoudsopgave

Connes' reduction of the uniqueness proof to the bicentralizer problem.- Haagerup's solution of the bicentralizer problem.

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Uniqueness of the Injective III1 Factor