Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20

Matrix Methods in Data Mining and Pattern Recognition

Specificaties
Paperback, 229 blz. | Engels
Society for Industrial & Applied Mathematics | 2e druk, 2020
ISBN13: 9781611975857
Society for Industrial & Applied Mathematics 2e druk, 2020 9781611975857
Onderdeel van serie Fundamentals of Algorithms
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application.

Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB.

In Part II, linear algebra techniques are applied to data mining problems.

Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed include classification of handwritten digits, text mining, text summarization, pagerank computations related to the Google search engine, and face recognition.

Exercises and computer assignments are available on a Web page that supplements the book.

Specificaties

ISBN13:9781611975857
Trefwoorden:Datamining, matrix
Taal:Engels
Bindwijze:paperback
Aantal pagina's:229
Druk:2
Verschijningsdatum:30-3-2020
Hoofdrubriek:IT-management / ICT

Inhoudsopgave

Preface

Part I. Linear Algebra Concepts and Matrix Decompositions
1. Vectors and matrices in data mining and pattern recognition
2. Vectors and matrices
3. Linear systems and least squares
4. Orthogonality
5. QR decomposition
6. Singular value decomposition
7. Reduced rank least squares models
8. Tensor decomposition
9. Clustering and non-negative matrix factorization

Part II. Data Mining Applications
10. Classification of handwritten digits
11. Text mining
12. Page ranking for a Web search engine
13. Automatic key word and key sentence extraction
14. Face recognition using rensor SVD

Part III. Computing the Matrix Decompositions
15. Computing Eigenvalues and singular values

Bibliography
Index.

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Matrix Methods in Data Mining and Pattern Recognition