Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20
,

Data Mining Techniques 3rd edition

For Marketing, Sales, and Customer Relationship Management

Specificaties
Paperback, 847 blz. | Engels
John Wiley & Sons | 3e druk, 2011
ISBN13: 9780470650936
Rubricering
John Wiley & Sons 3e druk, 2011 9780470650936
Verwachte levertijd ongeveer 8 werkdagen

Samenvatting

Hoe zorgt u ervoor dat de loyale klant behouden blijft? Welke berichten zijn het meest effectief binnen welk segment? Hoe kan de waarde van de klant worden gemaximaliseerd? 'Data Mining Techniques 3rd edition' beschrijft de krachtige databasetools die beschikbaar zijn, maar vaak verborgen zitten binnen bedrijfsdatabases, voor het vinden van de antwoorden op deze en andere cruciale vragen.

Specificaties

ISBN13:9780470650936
Taal:Engels
Bindwijze:paperback
Aantal pagina's:847
Druk:3
Hoofdrubriek:IT-management / ICT

Over Gordon Linoff

GORDON S. LINOFF is the founder of Data Miners, Inc., a consultancy specializing in data mining. Berry has jointly authored two of the leading data mining titles in the field, 'Data Mining Techniques' and 'Mastering Data Mining' (both from Wiley). He has decades of experience applying data mining techniques to business problems in marketing and customer relationship management.

Andere boeken door Gordon Linoff

Over Michael Berry

MICHAEL J. A. BERRY is the founder of Data Miners, Inc., a consultancy specializing in data mining. Berry has jointly authored two of the leading data mining titles in the field, 'Data Mining Techniques' and 'Mastering Data Mining' (both from Wiley). He has decades of experience applying data mining techniques to business problems in marketing and customer relationship management.

Andere boeken door Michael Berry

Inhoudsopgave

Introduction.

1. What Is Data Mining and Why Do It?
2. Data Mining Applications in Marketing and Customer Relationship Management.
3. The Data Mining Process.
4. Statistics 101: What You Should Know About Data.
5. Descriptions and Prediction: Profiling and Predictive Modeling.
6. Data Mining Using Classic Statistical Techniques.
7. Decision Trees.
8. Artificial Neural Networks.
9. Nearest Neighbor Approaches: Memory-Based Reasoning and Collaborative Filtering.
10. Knowing When to Worry: Using Survival Analysis to Understand Customers.
11. Genetic Algorithms and Swarm Intelligence.
12. Tell Me Something New: Pattern Discovery and Data Mining.
13. Finding Islands of Similarity: Automatic Cluster Detection.
14. Alternative Approaches to Cluster Detection.
15. Market Basket Analysis and Association Rules.
16. Link Analysis.
17. Data Warehousing, OLAP, Analytic Sandboxes, and Data Mining.
18. Building Customer Signatures.
19. Derived Variables: Making the Data Mean More.
20. Too Much of a Good Thing? Techniques for Reducing the Number of Variables.
21. Listen Carefully to What Your Customers Say: Text Mining.

Index.

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Data Mining Techniques 3rd edition